
CS 537 Notes, Section #15: Base and

Bounds, Segmentation

Base & bounds relocation:

 Two hardware registers: base address for process, bounds register that indicates the

last valid address the process may generate.

Each process must be allocated contiguously in real memory.

 On each memory reference, the virtual address is compared to the bounds register,

then added to the base register. A bounds violation results in an error trap.

 Each process appears to have a completely private memory of size equal to the

bounds register plus 1. Processes are protected from each other. No address relocation

is necessary when a process is loaded.

 Typically, the OS runs with relocation turned off, and there are special instructions to

branch to and from the OS while at the same time turning relocation on and off.

Modification of the base and bounds registers must also be controlled.

 Base & bounds is cheap -- only 2 registers -- and fast -- the add and compare can be

done in parallel.

 Explain how swapping can work.

 Examples: CRAY-1.

Problem with base&bound relocation:

 Only one segment. How can two processes share code while keeping private data

areas (e.g. shared editor)? Draw a picture to show that it cannot be done safely with a

single-segment scheme.

Multiple segments.

 Permit process to be split between several areas of memory. Each area is called a

segment and contains a collection of logically-related information, e.g. code or data

for a module.

 Use a separate base and bound for each segment, and also add a protection bit

(read/write).

 Each memory reference indicates a segment and offset in one or more of three ways:

1. Top bits of address select segment, low bits the offset. This is the most

common, and the best.

2. Or, segment is selected implicitly by the operation being performed (e.g. code

vs. data, stack vs. data).

3. Or, segment is selected by fields in the instruction (as in Intel x86 prefixes).

(The last two alternatives are kludges used for machines with such small

addresses that there is not room for both a segment number and an offset)

 Segment table holds the bases and bounds for all the segments of a process.

 Show memory mapping procedure, involving table lookup + add + compare. Example:

PDP-10 with high and low segments selected by high-order address bit.

Segmentation example: 8-bit segment number, 16-bit offset.

 Segment table (use above picture -- all numbers in hexadecimal):

 Code in segment 0 (addresses are virtual):
 0x00242: mov 0x60100,%r1

 0x00246: st %r1,0x30107

 0x0024A: b 0x20360

 Code in segment 2:
 0x20360: ld [%r1+2],%r2

 0x20364: ld [%r2],%r3

 ...

 0x203C0: ret

Advantage of segmentation: segments can be swapped and assigned to storage independently.

Problems:

 External fragmentation: segments of many different sizes.

 Segments may be large, have to be allocated contiguously.

 (These problems also apply to base and bound schemes)

Example: in PDP-10's when a segment gets larger, it may have to be shuffled to make room.

If things get really bad it may be necessary to compact memory.

Copyright © 1997, 2002, 2008, 2011 Barton P. Miller

Non-University of Wisconsin students and teachers are welcome to print these notes their

personal use. Further reproduction requires permission of the author.

